Cambridge International AS \& A Level

CANDIDATE NAME

CENTRE

NUMBER

\square

CANDIDATE NUMBER

CHEMISTRY

9701/34
Paper 3 Advanced Practical Skills 2
October/November 2021
2 hours
You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions Insert (enclosed)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.
- Give details of the practical session and laboratory, where appropriate, in the boxes provided.

INFORMATION

- The total mark for this paper is 40 .
- The number of marks for each question or part question is shown
 in brackets [].
- The Periodic Table is printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.
- The insert contains additional resources referred to in the questions.

For Examiner's Use	
1	
2	
3	
Total	

This document has 16 pages. Any blank pages are indicated.

BLANK PAGE

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 The thiosulfate ion, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, is unstable in the presence of acid. The following reaction occurs.

$$
\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The rate of this reaction can be measured by timing how long it takes for the solid sulfur that is formed to make the mixture too cloudy to see through.

You will investigate how the concentration of the thiosulfate ions affects the rate of this reaction.
Throughout these experiments care must be taken to avoid inhaling any SO_{2} that is produced. It is very important that as soon as each experiment is complete, the contents of the beaker are emptied into the quenching bath and the beaker is rinsed thoroughly.

FB 1 is 0.100 mol dm $^{-3}$ sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
FB 2 is $2.00 \mathrm{moldm}^{-3}$ hydrochloric acid, HCl .
distilled water

(a) Method

Experiment 1

- Label one burette FB 1 and fill it with FB 1.
- Run $45.00 \mathrm{~cm}^{3}$ of FB 1 from the burette into the $100 \mathrm{~cm}^{3}$ beaker.
- Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to measure $10.0 \mathrm{~cm}^{3}$ of FB 2.
- Add FB 2 to FB 1 and start timing immediately.
- Stir the mixture once and place the beaker on the printed insert.
- View the print on the insert from above the mixture.
- Stop timing when the print on the insert is no longer visible.
- Record this reaction time to the nearest second.
- Empty the contents of the beaker into the quenching bath.
- Rinse and dry the beaker so it is ready for use in Experiment 2.

Experiment 2

- Fill the second burette with distilled water.
- Refill the burette labelled FB 1 with FB 1.
- Run $20.00 \mathrm{~cm}^{3}$ of FB 1 into the $100 \mathrm{~cm}^{3}$ beaker.
- Run $25.00 \mathrm{~cm}^{3}$ of distilled water into the same beaker.
- Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to measure $10.0 \mathrm{~cm}^{3}$ of FB 2.
- Add FB 2 to the beaker and start timing immediately.
- Stir the mixture once and place the beaker on the printed insert.
- View the print on the insert from above the mixture.
- Stop timing when the print on the insert is no longer visible.
- Record this reaction time to the nearest second.
- Empty the contents of the beaker into the quenching bath.
- Rinse and dry the beaker so it is ready for use in the next experiment.

Experiments 3-5

- Carry out three further experiments to investigate how the reaction time changes with different volumes of FB 1.

The combined volume of FB 1 and distilled water must always be $45.00 \mathrm{~cm}^{3}$.
Do not use a volume of FB 1 that is less than $20.00 \mathrm{~cm}^{3}$.
Record all your results in a table.
You should include the volume of FB 1, the volume of distilled water, the reaction time and the reaction rate for each of your five experiments.
Calculate the rate of reaction using the following formula.

$$
\text { rate }=\frac{1000}{\text { reaction time }}
$$

(b) On the grid opposite, plot the rate on the y-axis against the volume of FB 1 on the x-axis. Identify any anomalous points. Draw a line of best fit.

I	
II	
III	
IV	

(c) In these experiments, the volume of FB 1 is related to the concentration of the thiosulfate ions.

Use your graph to suggest the relationship between the rate of reaction and the concentration of the thiosulfate ions.
\qquad
\qquad
(d) The quenching bath contains an aqueous mixture of sodium carbonate and universal indicator.
(i) How does the quenching bath prevent the further production of SO_{2} from the reaction?
\qquad
\qquad
(ii) Suggest why the mixture contains universal indicator.
\qquad
\qquad
(e) (i) In each experiment the acid is in large excess.

Show, by calculation, that the acid is in large excess in Experiment 1.
(ii) Suggest a reason why the acid used should be in large excess.
\qquad
\qquad

2 In this experiment you will determine the concentration of a solution of copper(II) sulfate. You will react an excess of zinc with copper(II) sulfate as shown.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

FB 3 is zinc powder.
FB 4 is aqueous copper(II) sulfate, CuSO_{4}.
(a) Method

- Support the cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Using the $50 \mathrm{~cm}^{3}$ measuring cylinder, transfer $40 \mathrm{~cm}^{3}$ of FB 4 into the cup.
- Measure and record the temperature of the solution in the cup.
- Add all of FB 3 to the cup.
- Use the thermometer to stir the mixture gently.
- Measure and record the maximum temperature reached.
- Calculate and record the change in temperature.

(b) Calculations

(i) Use your results from (a) to calculate the heat energy produced in the reaction. (Assume that 4.2 J are required to change the temperature of $1.0 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.)
heat energy produced =
(ii) You can assume that under the conditions of your experiment the molar enthalpy change for the reaction is $-218.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Use this value to calculate the concentration, in moldmºr of FB 4.
\qquad
(c) (i) Calculate the maximum percentage error in the temperature rise that you recorded in (a). Assume that the maximum error in a single thermometer reading is $\pm 0.5^{\circ} \mathrm{C}$.
maximum percentage error $=$ \% [1]
(ii) The maximum percentage error becomes smaller if the temperature rise is increased. A student suggests that using a greater volume of FB 4 would increase the temperature rise as long as the zinc remains in excess.

Explain whether the student is correct.
\qquad
\qquad
\qquad
\qquad

Qualitative analysis

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.
If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 (a) FB 5 is an aqueous solution containing three cations and a single anion. Two of the cations are listed in the Qualitative Analysis Notes. The anion is either the sulfate ion, $\mathrm{SO}_{4}{ }^{2-}$, or the sulfite ion, $\mathrm{SO}_{3}{ }^{2-}$.
(i) Carry out tests to identify the three cations.

Record your tests and observations.

I	
II	
III	
IV	
V	
VI	
VII	

The formulae for the cations present in FB 5 are \qquad and \qquad
(ii) Carry out tests to identify whether FB 5 contains the sulfate ion, $\mathrm{SO}_{4}{ }^{2-}$, or the sulfite ion, $\mathrm{SO}_{3}{ }^{2}$.
Record your observations.

The anion present in FB 5 is \qquad
(b) (i) Carry out the following tests on FB 6 and FB 7 and record your observations.

test	
Test 1	observations
Add a small spatula measure of	
FB 6 to a hard-glass test-tube.	
Heat the sample gently at first and	
then more strongly.	

(ii) State the type of reaction observed with FB 6 in (b)(i).
\qquad

BLANK PAGE

BLANK PAGE

BLANK PAGE

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { zinc, } \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, CO_{3}^{2-}	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $I^{-(a q)}$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

	을
	Oi ${ }^{\circ}$
	8 ¢ ¢
	®
	n ¢
	ま
Ge	
	® U

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

